翻訳と辞書 |
Plateau's problem : ウィキペディア英語版 | Plateau's problem In mathematics, Plateau's problem is to show the existence of a minimal surface with a given boundary, a problem raised by Joseph-Louis Lagrange in 1760. However, it is named after Joseph Plateau who experimented with soap films. The problem is considered part of the calculus of variations. The existence and regularity problems are part of geometric measure theory. ==History== Various specialized forms of the problem were solved, but it was only in 1930 that general solutions were found in the context of mappings (immersions) independently by Jesse Douglas and Tibor Radó. Their methods were quite different; Radó's work built on the previous work of René Garnier and held only for rectifiable simple closed curves, whereas Douglas used completely new ideas with his result holding for an arbitrary simple closed curve. Both relied on setting up minimization problems; Douglas minimized the now-named Douglas integral while Radó minimized the "energy". Douglas went on to be awarded the Fields Medal in 1936 for his efforts.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Plateau's problem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|